36氪出海 - 助力中国公司全球化

  • 英文站 KrASIA
  • 日文站 KrJAPAN
36氪出海
36氪出海
新能源汽车

车企得了AI病:月砸上亿拼智驾算力

深度观察 

想要量产端到端的智能驾驶产品,车企们需要先成为吞噬海量数据、巨大云端算力的猛兽。
分享:

“下半年开始,理想几乎把渠道商手里的卡都买了。”一位知情人士说。

AI大模型创业催生的抢购算力潮,今年陡然迁移到了汽车行业。以理想、华为和小鹏汽车为首,向端到端智驾发起猛冲的公司,尤为激进。

和AI大模型技术趋同,端到端的智能驾驶技术,同样有数十亿参数,也在向百亿级进发。算力就是这座数据熔炉的燃料。这也决定,端到端技术和算力资源拼抢,成了智能驾驶新的决胜规则。

“李想(理想汽车CEO)经常问我,算力资源够不够,不够再去买。”接受36氪专访时,理想智能驾驶副总裁朗咸鹏曾表示。据36氪了解,目前理想汽车已经囤够了万张算力卡,“同时还在物色数据中心的地址。”

7月,理想的云端算力为2.4 EFLOPS ,到8月底,理想算力已经陡增至5.39 EFLOPS。几乎一个月时间,理想的云端算力增加了近3 EFLOPS。

同样,小鹏汽车宣布,到2025年,云端算力将从目前的2.51 EFLOPS增加到10 EFLOPS。

华为智驾也在两个月内迅速将云端训练算力规模从5EFLOPS扩张到7.5 EFLOPS。

这是什么概念?有智驾行业人士告诉36氪,目前车企们使用的训练显卡主要是英伟达H100和A800。美国禁令后,市场上能流通的大多是A800。

据36氪汽车了解,一台A800服务器(含8张显卡)报价约为95万元。按照FP16精度计算,单张A800的算力为320TFLOPS,1 EFLOPS(等于1000000TFLOPS)大约可计算为3125张A800,即390个8卡模组。

按每8卡模组按照95万元价格计算,1 EFLOPS算力大约需要约3.7亿元。

也就是说,理想汽车在过去1个多月,仅囤置算力芯片就耗费超10亿元,而小鹏想要实现明年总算力目标,则需要耗费约37亿元。

虽然耗资巨甚,但不容车企懈怠。智能驾驶技术已经在AI大浪潮下,发生新的范式革命:从传统方案的规则驱动,变成了“端到端”方案的AI驱动、数据驱动。

想要量产端到端的智能驾驶产品,车企们需要先成为吞噬海量数据、巨大云端算力的猛兽。

特斯拉先成为“算力狂魔”。去年9月,特斯拉AI训练芯片储备不过万张左右,而在今年三季度财报会数字显示,目前特斯拉AI算力约等效为6.75万张英伟达H100芯片。一年时间算力储备翻超6倍。

图源:特斯拉官网

这是相当恐怖的数字。目前特斯拉总算力约为67.5 EFLOPS,对比之下,去年全球算力总规模为910 EFLOPS。

但在海量数据喂养和超大算力训练下,特斯拉基于端到端的FSD v12版本,提供了比以往更丝滑、拟人的智驾能力。这也诱使汽车行业进入这场数据和算力游戏。

车企患上数据饥渴症

端到端下的智能驾驶技术,是数据和算力的合谋。

对于端到端智驾所需要的数据,特斯拉曾给出过一些判断标准:一个端到端自动驾驶训练至少需要100万个、分布多样、高质量的clips(视频片段)才能正常工作。到了1000万个case后,系统能力会变得难以置信。

有行业人士告诉36氪,一般1个clip在15-30秒左右,没有绝对固定的时间长度。

特斯拉有相当明显的数据优势。目前特斯拉已经在全球卖出700万辆车,即便有效的数据车辆为百万辆,如果单车每天贡献一个clip,那么特斯拉每天就有百万个clips能被拿来训练。

也有行业人士向36氪假设,假如在云端训练一个80 亿参数的模型,至少需要在这个模型“炼丹炉”中投入1万个小时训练数据,并且每两周更新要更新一遍数据。

越早建立数据驱动的智驾闭环,车企的技术与产品壁垒就越厚,也越有机会将后来者拒之门外。

理想表示,最晚明年年初,会推出大概通过超过1000万clips训练出来的端到端+VLM。前段时间小鹏智驾负责人李力耘也在公开表示,小鹏端到端模型的训练数据量已达到2000万clips。

但高质量数据并不容易寻得。马斯克曾表示,有效的用户干预行为(高价值的训练数据)捕捉正变得越来越难。“每行驶 10000 英里,只有 1 英里对训练 FSD 神经网络有用。”

理想也表示,目前超80万辆车主,但真正能提供高质量数据的用户只有3%。

多位智驾行业人士告诉36氪,目前车企和智驾公司获取数据主要有2种方式。

一是从量产车上挖掘。比如针对车企卖出的几十万台车,工程师会写下专门规则,如果用户的驾驶行为符合条件,特定数据(经过脱敏处理)会被上传。车企用户也可以主动上传一些特别案例。

而智驾供应商,也许在量产车数据回传上没有优势,但内部往往会组建一支能优质驾驶的车队,专门路跑采集数据。

数据回传本身是一笔不小的成本。据36氪汽车了解,一家头部智驾供应商公司,每年回传数据的流量费以亿元为单位。如果是新造车公司,这项费用支出会更高。

二是在存量数据中挖掘数据。在早期智驾还不成熟的阶段,车企和智驾公司往往积累大量数据,很多都是无效数据,工程师只能通过一些算法规则来挖取。

高质量数据作为养料,会决定智驾系统迭代的质量。这持续考验着车企的智驾自动化闭环能力:从数据采集、数据清洗、标注、训练、仿真验证、发版、解bug,再经历新一轮闭环。

而这背后每一步的数据流转,都在吞噬算力资源。车企和智能驾驶技术公司们,似乎难有退路。

智驾要卖钱,“端到端”虽难必做

端到端智能驾驶带来的收益正在触手可见。

在2023年末推出基于端到端的FSD后,马斯克曾发邮件督促一线销售让更多用户体验智驾的拟人能力,原因是FSD的体验变得更好了。

今年以来,特斯拉甚至采用了全员免费限时使用(北美地区)、订阅费从199美元/月下降至99美元/月,买断费用从1.2万美元下降至4500美元等方式,来提升FSD的渗透率。特斯拉还表示FSD将于明年一季度在中国落地。这将有另一番商业想象空间。

换句话说,“端到端”让智驾比过往任何时刻都接近商业化。

在国内,“端到端”也在加速智驾商业化进程。

华为最早尝到智驾商业化甜头。去年末,华为与赛力斯合作的问界新M7,上市两月余斩获10万个订单,智驾版用户超60%。

除了推出智驾版车型,华为还通过智驾软件包的方式进一步收费。而目前行业大多数车企智驾软件都是免费开放给用户。

跟特斯拉降价促销不同,华为智驾软件费用正在逐步上涨。有鸿蒙销售人士告诉36氪汽车,华为智驾ADS 1.0阶段买入价格是3000元,ADS2.0阶段买入是6000元,ADS3.0是1万元。“后续价格还会涨。”

而ADS 1.0到2.0到3.0版本,正是华为从传统多模块智驾逐步转向了端到端智驾后,带来的技术和产品体验提升。

另一个尝到智驾技术红利的选手是理想。在增程+家庭车产品力足够打动用户的前提下,理想从今年开始猛追补足智驾短板,其端到端智驾版本已经全量推送给所有车型MAX版本,智驾口碑回升。

今年二季度财报电话会议上,理想汽车称其30万以上的车型AD Max(即智驾版本车型)订单占比接近70%。而AD Max版车型比AD Pro版车型贵2万元。用户为更贵的车型买单,实际上也是在为智驾买单。

美国作家菲利普·迪克曾在小说《仿生人会梦见电子羊吗?》中描述,仿生人拥有感情、会做梦,并希望拥有一只活宠物。

端到端加持下,智驾系统可能已经开始“梦”到电子羊。但电子梦境的维持,需要大量资源灌注,车企与智驾公司也由此患上了数据、算力饥渴症。

算力游戏,买卡建机房

除了卖车获取更多数据养料,车企智驾团队还在筹备芯片算力资源。

特斯拉三季度财报电话会数据显示,目前特斯拉AI算力约等效为6.75万张英伟达H100芯片,总算力约为67.5 EFLOPS。

特斯拉称,到10月底,特斯拉还将增加2.1万张H100,可大致推测出,特斯拉届时总算力将达88.5 EFLOPS。

除了疯狂购入英伟达显卡之外,特斯拉自研的芯片也在路上。马斯克此前在X上发帖称,其超级计算机Dojo 1到年底,将会有约8000台H100 GPU提供等效的训练能力。特斯拉此前期望是,Dojo进入投产后,其算力集群总规模能达到100 EFLOPS。

望不见顶的算力储备,让国内车企玩家不敢轻易掉队。

不过芯片限售后,英伟达的高端AI芯片H100难以在国内流通,国内企业更容易买到的,是英伟达针对中国市场推出的特供版芯片A800等,性能与价格都不如H100。

目前,华为智驾是国内算力储备最高的玩家,达7.5 EFLOPS。有华为人士告诉36氪,内部不仅使用英伟达的训练芯片,同时还在使用华为自研的晟腾芯片,两者混合使用。晟腾工具链虽然不算特别好用,但由于自研的缘故,供给充足,华为能在云端算力上进展很快。

理想汽车则以5.39 EFLOPS 位居华为之后。而这背后,是万张左右的英伟达显卡储备。

有行业人士给36氪算了一笔账:以A800芯片为例,按照深度学习训练一般适用的FP16精度来计算,单张A800算力为320 TFLOPS,那么5.39 EFLOPS算力实现,需要超1.68万张A800。(理想不完全是A800,此处仅大致计算,1EFLOPS=1000PFLOPS=1000000TFLOPS)

有行业人士告诉36氪,今年AI大模型公司算力抢购热潮消退后,云端训练显卡相对好买。去年A800的8卡模组价格轻松卖超百万元,如今回落到95万元左右。即便如此,国内车企玩家想要囤积算力,依然是一笔巨额投入。

理想的目标是年底达到8EFLOPS。据36氪了解,理想此前已经与云厂商火山引擎联合建立数据中心,但目前还在筹备新的数据中心选址。

小鹏智驾中心算力则是2.51 EFLOPS,同理可换算为超7800张A800,小鹏的目标是2025年算力将达10 EFLOPS 以上。蔚来目前的云端算力是1.4 EFLOPS,可换算为超4300张A800。

可以对比的是,据工信部信息,截至2024年6月,国内算力规模达246 EFLOPS(基于FP32计算)。如果换算成FP16,即492EFLOPS。而华为、蔚小理4家企业云端算力总和,就占全国算力规模约3.5%。

但端到端不仅是巨头的游戏,中小玩家也在挤进围场。智驾供应商往往联合车企快速攻入战场,比如出现了智己与Momenta、长城与元戎启行等组合。

据36氪汽车了解,一些头部智驾供应商的训练芯片也达千张级别。如Momenta、地平线等去年就跟火山引擎达成合作,订单在亿元级别。

过去两年,全球都陷入了AI大模型疯狂状态。国内AI大模型公司的创业入场门票高达5000万美元,目前估值最高的大模型公司“月之暗面”身价已经去到236亿元。

目前国内头部AI大模型公司正朝着万亿参数量模型发展,这背后也需要巨大的算力池支撑。阶跃星辰,Kimi等大模型公司,都在通过与云厂商合作来搭建万卡集群训练。

如今同样的局面在汽车行业上演。车企们不甘心只卖车,而是朝着AI科技公司的方向进发。车企们天然拥有海量数据资源,在大模型大算力的加持下,目光已经投向了更广的无人车、具身智能等方向。

他们需要在微薄的利润水平下,投入巨资,竞逐越来越高的算力数字。这能持久吗?汽车行业正陷入价格鏖战,如果把AI作为决胜筹码,这场“经费在燃烧”的算力游戏才刚刚开始。

头图|Unsplash

本文来自36氪汽车,文|李安琪,编辑|李勤,36氪出海经授权转载。

近期活动

活动|全球化实战论:企业出海实践经验分享(一)

随着出海的脚步逐渐深入海外本地市场,许多挑战也浮出水面,成为企业关注的焦点。为了帮助数字经济企业更深刻地了解出海过程中的各类问题,36氪出海将于11月7日下午2:30在北京举办线下交流活动。届时,来自快乐小羊国际餐饮连锁的重磅嘉宾将结合自身深刻的出海实践经验,从本地化运营、供应链建设、数字化品牌营销等角度,分享出海过程中的宝贵洞察,帮助企业更好地理解出海的全链路,并与自身企业特点结合,更顺利地开展海外业务。如果您希望深入了解企业出海过程中的实践经验和挑战,欢迎您扫描下方二维码,填写表单,报名参加。活动报名将于11月6日中午12:00截止。

加入36氪出海学习交流群

目前,36氪出海学习交流群已经吸引超过15000位来自国内外初创企业、行业巨头、投资机构等出海人加入。在出海社群里,我们面向群成员挑选整理每日全球跨境资讯,帮助出海人把握最新动态;定期组织出海交流活动,链接出海生态圈,寻找潜在合作伙伴!欢迎添加36氪出海小助手微信(ID:wow36krchuhai-xzs2)申请入群,一同出海!

分享
//
热门行业
|
市场
|
公司
汽车出海
广告图片
关注公众号
扫一扫即刻关注
36氪出海微信公众号

推荐阅读


深度解析

  • TikTok 败诉,全球化的艰难一章才刚刚翻开

    TikTok 案背后, 是更多在美国开展业务的中国企业们,将集体迎来一个并不乐观的信号。

    社交文娱

    TikTok 败诉,全球化的艰难一章才刚刚翻开

    刚刚